641 research outputs found

    Cognitive Radio for Emergency Networks

    Get PDF
    In the scope of the Adaptive Ad-hoc Freeband (AAF) project, an emergency network built on top of Cognitive Radio is proposed to alleviate the spectrum shortage problem which is the major limitation for emergency networks. Cognitive Radio has been proposed as a promising technology to solve todayâ?~B??~D?s spectrum scarcity problem by allowing a secondary user in the non-used parts of the spectrum that aactully are assigned to primary services. Cognitive Radio has to work in different frequency bands and various wireless channels and supports multimedia services. A heterogenous reconfigurable System-on-Chip (SoC) architecture is proposed to enable the evolution from the traditional software defined radio to Cognitive Radio

    Power Market Cybersecurity and Profit-targeting Cyberattacks

    Get PDF
    The COVID-19 pandemic has forced many companies and business to operate through remote platforms, which has made everyday life and everyone more digitally connected than ever before. The cybersecurity has become a bigger priority in all aspects of life. A few real-world cases have demonstrated the current capability of cyberattacks as in [1], [2], and [3]. These cases invalidate the traditional belief that cyberattacks are unable to penetrate real-world industrial systems. Beyond the physical damage, some attackers target financial arbitrage advantages brought by false data injection attacks (FDIAs) [4]. Malicious breaches into power market operations could induce catastrophic consequences on fair financial settlements and reliable transmission services. In this dissertation, an in-depth study is conducted to investigate power market cybersecurity and profit-targeting cyberattacks. In the first work, we demonstrate the importance of market-level behavior in defending cyberattacks and designing cyberattacks. A market-level defense analysis is developed to help operators identify cyberattacks, and an LMP-disguising attack strategy is developed to disguise the abnormal LMPs, which can bypass both the bad data detection and market-level detection. In the second work, we propose a comprehensive CVA model for delivering a detailed analysis of four aspects of vulnerability: highly probable cyberattack targets, devastating attack targets, risky load levels, and mitigation ability under different degrees of defense. In the third work, we identify that revenue adequacy, a fundamental power market operation criterion, has not been analyzed under the context of cybersecurity, and we explore the impact of FDIAs targeting real-time (RT) market operations on ISO revenue adequacy analytically and numerically. In the last work, we extend the power system cybersecurity analysis to multi-energy system (MES) framework. An optimally coordinated (OC-FDIA) targeting MES is proposed. Then, we show that the OC-FDIA cause much more severe damages than single-system FDIA and uncoordinated FDIAs. Further, an effective countermeasure is developed against the proposed OCFDIA based on deep learning technique (DL)

    Cognitive radio on a reconfigurable MPSoC platform

    Get PDF
    Due to the explosive growth of wireless communication, the demands for\ud radio spectrum are rapidly increasing. It is very di±cult to accommodate\ud new wireless services under the current spectrum allocation scheme. On\ud the other hand, the allocated spectrum is not e±ciently utilized. Cognitive\ud Radio is proposed as a technology to solve the imbalance between spectrum\ud scarcity and spectrum under-utilization. Spectrum utilization can be im-\ud proved by making it possible for a user who does not have the license for\ud spectrum (secondary user) to access the spectrum which is not occupied by\ud the licensed user (primary user). This secondary user has the awareness of\ud the spectrum and adapts its transmission accordingly on a non-interference\ud basis. This spectrum access and awareness scheme is referred to as Cogni-\ud tive Radio. The idea is also known as Dynamic Spectrum Access (DSA) or\ud Open Spectrum Access (OSA). Cognitive Radio is seen as the ¯nal point\ud of software defined radio (SDR) platform evolution. A fully °exible and\ud e±cient software defined radio platform will be the enabling technology for\ud Cognitive Radio. Cognitive Radio imposes a number of requirements on\ud the processing platform such as °exibility, energy e±ciency and guaranteed\ud throughput/latency. The trend in the implementation of SDR is moving\ud towards Multiprocessor System-on-Chip (MPSoC) platforms.\ud The work of this PhD thesis is part of the Ad-hoc Adaptive Freeband\ud (AAF) project. The aim of the AAF project is to design a Cognitive Radio\ud based wireless ad-hoc network for emergency situations. Although the AAF\ud project addresses Cognitive Radio in a holistic fashion from physical layer to\ud networking issues, the work of this thesis mainly focuses on the design of the\ud adaptive physical layer (baseband processing). The physical layer consid-\ud ered in this thesis mainly consists of two parts: transmission and spectrum\ud sensing. A reconfigurable MPSoC platform is used to support the adap-\ud tive baseband processing of Cognitive Radio. A coarse-grain recon¯gurable\ud processor called the Montium, developed at the University of Twente, is\ud considered in this thesis as a key element of the proposed MPSoC platform

    Extension of zigzag search algorithms for power system multi-objective optimization

    Get PDF
    The work presented in this thesis focuses on the application and extension the zigzag search algorithms in power systems. The zigzag search method is a multi-objective algorithm which has recently been applied in multiple engineering fields, such as oil well replacement, with fast computational time and accurate results.Multi-objective optimization algorithms in power systems have been investigated for years. Most of the literatures focus on evolutionary algorithms (EA) such as a non-dominated sorting genetic algorithm (NSGA) or multi-objective particle swarm optimization (MOPSO) for their simplicity and ease of implementation. However, there have been several issues regarding the evolutionary algorithm (EA). For example, the computational time of EA is significant and the parameter configurations are complicated. Other approaches mainly reply on the weight sum method by lumping together different objective functions to form a new single objective function; however, the priority is hard to determine and the characteristic between different objectives may be lost.In order to improve the performance of power system multi-objective optimization problems, this thesis will first introduce the zigzag search algorithm. Second, by modifying the classic zigzag search algorithm, the zigzag interior point method and zigzag genetic algorithm method will both be proposed to broaden the applications of the classic zigzag search method. Also, in order to provide a systematic method for step-size configuration, a zigzag search method with adaptive step-size will be proposed. Thirdly, all algorithms will be applied to several practical power system multi-objective problems to demonstrate their practicability and effectiveness.The case study will be carried out on a modified IEEE 30-bus system and the IEEE 118-bus system. A comparison will be made with classic multiobjective algorithms which have been widely applied in power systems to demonstrate the effectiveness and efficiency of the proposed zigzag search methods

    Adaptive OFDM System Design For Cognitive Radio

    Get PDF
    Recently, Cognitive Radio has been proposed as a promising technology to improve spectrum utilization. A highly flexible OFDM system is considered to be a good candidate for the Cognitive Radio baseband processing where individual carriers can be switched off for frequencies occupied by a licensed user. In order to support such an adaptive OFDM system, we propose a Multiprocessor System-on-Chip (MPSoC) architecture which can be dynamically reconfigured. However, the complexity and flexibility of the baseband processing makes the MPSoC design a difficult task. This paper presents a design technology for mapping flexible OFDM baseband for Cognitive Radio on a multiprocessor System-on-Chip (MPSoC)

    Enabling Multi-level Trust in Privacy Preserving Data Mining

    Full text link
    Privacy Preserving Data Mining (PPDM) addresses the problem of developing accurate models about aggregated data without access to precise information in individual data record. A widely studied \emph{perturbation-based PPDM} approach introduces random perturbation to individual values to preserve privacy before data is published. Previous solutions of this approach are limited in their tacit assumption of single-level trust on data miners. In this work, we relax this assumption and expand the scope of perturbation-based PPDM to Multi-Level Trust (MLT-PPDM). In our setting, the more trusted a data miner is, the less perturbed copy of the data it can access. Under this setting, a malicious data miner may have access to differently perturbed copies of the same data through various means, and may combine these diverse copies to jointly infer additional information about the original data that the data owner does not intend to release. Preventing such \emph{diversity attacks} is the key challenge of providing MLT-PPDM services. We address this challenge by properly correlating perturbation across copies at different trust levels. We prove that our solution is robust against diversity attacks with respect to our privacy goal. That is, for data miners who have access to an arbitrary collection of the perturbed copies, our solution prevent them from jointly reconstructing the original data more accurately than the best effort using any individual copy in the collection. Our solution allows a data owner to generate perturbed copies of its data for arbitrary trust levels on-demand. This feature offers data owners maximum flexibility.Comment: 20 pages, 5 figures. Accepted for publication in IEEE Transactions on Knowledge and Data Engineerin

    Low Power Implementation of Non Power-of-Two FFTs on Coarse-Grain Reconfigurable Architectures

    Get PDF
    The DRM standard for digital radio broadcast in the AM band requires integrated devices for radio receivers at very low power. A System on Chip (SoC) call DiMITRI was developed based on a dual ARM9 RISC core architecture. Analyses showed that most computation power is used in the Coded Orthogonal Frequency Division Multiplexing (COFDM) demodulation to compute Fast Fourier Transforms (FFT) and inverse transforms (IFFT) on complex samples. These FFTs have to be computed on non power-of-two numbers of samples, which is very uncommon in the signal processing world. The results obtained with this chip, lead to the objective to decrease the power dissipated by the COFDM demodulation part using a coarse-grain reconfigurable structure as a coprocessor. This paper introduces two different coarse-grain architectures: PACT XPP technology and the Montium, developed by the University of Twente, and presents the implementation of a\ud Fast Fourier Transform on 1920 complex samples. The implementation result on the Montium shows a saving of a factor 35 in terms of processing time, and 14 in terms of power consumption compared to the RISC implementation, and a\ud smaller area. Then, as a conclusion, the paper presents the next steps of the development and some development issues

    Blind Source Separation over Space: an eigenanalysis approach

    Get PDF
    We propose a new estimation method for the blind source separation model of Bachoc et al. (2020). The new estimation is based on an eigenanalysis of a positive definite matrix defined in terms of multiple normalized spatial local covariance matrices, and, therefore, can handle moderately high-dimensional random fields. The consistency of the estimated mixing matrix is established with explicit error rates even when the eigen-gap decays to zero slowly. The proposed method is illustrated via both simulation and a real data example
    corecore